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Abstract Complete analytical resolution of the network of chemical reactions
involving the flavylium compounds was achieved by means of the Laplace transform,
general partial fraction theorem and Vieta’s formulae. The kinetic model includes
basic and acid catalysis of the hydration and tautomerization reactions. The formation
of phenyl-2H-chromen-4-ol (B4) and the role it plays in the kinetics in the case of
compounds lacking of the hydroxyl substituents was also accounted for. In all cases
four kinetic steps could be individualized and the pH dependent mole fraction distri-
bution of the several species monitored as a function of time, the last one leading to the
equilibrium. It is worth of note the role of B4 in the network, which like the quinoidal
base is a kinetic product that retards the formation of Ct. The evolution of B4 is also
dependent on the existence or not of the cis-trans isomerisation barrier. Application of
the model to the data of flavylium networks previously reported in literature, predicts
with great accuracy the respective behavior.

Keywords Anthocyanins · Kinetics · Flavylium · Naphthoflavylium ·
Styrylflavylium · pH jumps · Flash photolysis

1 Introduction

2-phenyl-1-benzopyrylium (Flavylium) constitutes a big family of compounds includ-
ing anthocyanins, the natural dyes responsible for the color of many flowers and fruits.
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Scheme 1 A general chemical reactions network of anthocyanins, flavylium and naphthoflavylium com-
pounds

Anthocyanins are derivative of the flavylium compounds possessing glucose or another
sugar substituent at position 3 or 3 and 5 [1]. Natural Anthocyanins are involved in
acid-base type of equilibrium between flavylium cation and essentially the “basic”
species quinoidal base (proton releasing from flavylium cation) and hemiketal (hydra-
tion of flavylium cation), which determines the pH dependent color. In anthocyanins
the chalcones are minor products. In contrast synthetic flavylium compound without
substituent in position 3 [2] can be involved not only in proton transfer and hydration
reactions, but also into a ring-chain tautomeric reaction producing a cis-chalcone from
the hemiketal and isomerisation leading totrans-chalcone. In spite of these differences
all flavylium derived compounds follow the same network of chemical reactions. The
kinetics of the reversible reactions network of the and the thermodynamics depends on
the substituents of the flavylium core. The network is thus a complex system that could
respond to various stimuli such as pH, light, (photoinduced trans-cis isomerisation)
solvents and presence of surfactants, metal cation, gels, ionic liquids within others
[3,4].

The study of the flavylium network of chemical reactions has been put together
in several steps complemented or corrected consecutively during the course of many
decades. [5] The work from Brouillard and Dubois [6], and McClelland [7] shaped the
perception that we have of the network. In particular the achievements of McClelland
introducing the basic and acid catalysis were of primordial importance. However, up
to now a complete resolution of the kinetic equations including the acid and basic
catalysis as well as the possibility of B4 formation was not accomplished. A com-
plete resolution of thermodynamic and kinetic behavior of such a network of chemical
reactions will provide a better understanding of the behavior of those systems giving
important information for the synthesis of the compounds with desired properties, in
particular for the model systems for optical memories. [8]

2 Theory

2.1 Thermodynamic behavior

Scheme 1 reports a typical flavylium network of reactions.
Flavilium cation AH+is the most stable species at significantly low pH values.

When the pH is raised, three competitive reactions occur:
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(1)

(2)

(3)

The proton transfer reaction Eq. (1) is very fast (process ends in less than a millisecond)
and the quinoidal base A is formed almost instantaneously. However, often other basic
species are more stable than quinoidal base and thus it disappears partially or com-
pletely during the pseudo equilibration process (see below). Usually flavylium cation
have smaller positive charge at position 4 than at position 2 and as a consequence the
hydration reaction at position 4 Eq. (3) is slower and leads to a less stable product
than at position 2 Eq. (2). For the flavylium compounds possessing a hydroxyl group
substituent ordinary the B4 species is not experimentally observed. That is why two
different general models could be constituted—one for flavylium compounds bear-
ing hydroxyl susbtituents, which form the quinoidal base A, but not B4 and another
for compounds lacking of the hydroxyl group forming B4, but not A (see below). The
hemiketal B2 (chromene) is involved in a ring-chain tautometic process Eq. (4) leading
to the formation of cis-chalcone Cc.

(4)

Both tautomeric reactions direct and reverse are catalyzed by H+ and OH−7. In fact
observed rate constants of the tautomeric reaction kt and k−t are not constants as a
function of pH, but functions of proton and hydroxyl concentration as follows:

k′
t = kt + k H

t [H+] + kOH
t [OH−]; k′−t = k−t + k H−t [H+] + kOH−t [OH−]

However, it was experimentally observed that the thermodynamic constant Kt is not
function of pH, the effect of proton and hydroxyl being considered as a catalytic effect:
the following relation is valid:
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Kt = kt

k−t
= k′

t

k′−t
= k H

t

k H−t

= kOH
t

kOH−t
(5)

The most stable species at higher pH values in synthetic flavylium or naphthoflavy-
lium networks is generally the trans-chalcone Ct formed trough the isomerisation of
Cc Eq. (6).

(6)

Often, especially when a substituent in position 7 is not presented and substituent at
position 2’ or 4’ is −OH or −OCH3 group, a cis-trans isomerisation barrier is high
and the isomerisation reaction is much slower that the other three. In this case pseudo
equilibrium between AH+ and A, B and Cc species, prior to significant formation
of Ct, can be experimentally observed according to Eqs. (1–4). The system can be
simplified in one single acid base type equation involving AH+ and CB∧, see Eq. (7):

AH+ K ∧
a

� CB∧ + H+ (7)

Where : [CB∧] = [Cc] + [B2] + [B4] + [A] (8)

and K ∧
a = Ka + Kh + Kh4 + Kh Kt = [CB∧][H+]

[AH+] (9)

The mole fraction of the species at pseudo equilibrium (7) can be calculated as follows:

χAH+ = [H+]
[H+] + K ∧

a
(10)

χA = Ka

[H+] + K ∧
a

(11)

χB2 = Kh

[H+] + K ∧
a

(12)

χB4 = Kh4

[H+] + K ∧
a

(13)

χCc = Kh Kt

[H+] + K ∧
a

(14)

By analogy with pseudo equilibrium the final equilibrium on the system can be pre-
sented as:

AH+ K ′
a

� CB + H+ (15)
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Where : [C B] = [Ct] + [Cc] + [B2] + [B4] + [A] (16)

and K ′
a = K ∧

a + Kh Kt Ki = [CB][H+]
[AH+] (17)

The mole fraction of the species at equilibrium (15) can be calculated as follows:

χAH+ = [H+]
[H+] + K ′

a
(18)

χA = Ka

[H+] + K ′
a

(19)

χB2 = Kh

[H+] + K ′
a

(20)

χB4 = Kh4

[H+] + K ′
a

(21)

χCc = Kh Kt

[H+] + K ′
a

(22)

χCt = Kh Kt Ki

[H+] + K ′
a

(23)

2.2 Kinetic behavior and mathematical resolution

The resolution of the kinetic Scheme 1, Eqs. (1–6) for direct pH jumps, reverse pH
jumps and flash photolysis experiments is based on the Laplace transformation, gen-
eral partial fraction theorem and Vieta’s formulae. Mathematical reasoning was maid
previously in great details elsewhere [9] and here only the main properties of the
solutions and the specific details for these particular cases are presented. The general
algorithm of the solution can be written as follows:

1. A set of differential equation describing the chemical processes in the system is
written

2. By using the Laplace Transform property to transform a differential equation in
linear one the system is transformed into linear system of equations.

3. The obtained system of linear equations is solved for the new variables in Laplace
space

4. The solutions can be presented as: x(s) = P1(s)
s.P2(s)

,

where: x(s) is the new variable in Laplace space, P1(s) and P2(s) are polyno-
mials. The degree of the polynomial P1 is smaller or equal to the degree of the
polynomial P2.
The roots of the polynomial P2(s) depend on all the rate constants of the system
as well as [H+] and are the observed rate constants i.e. positive real numbers.
Polynomial P2(s) is the characteristic equation of the presented system [10]. The
denominator s. P2(s) = 0 have an obvious root s = 0. This is a so-called station-
ary solution—all of the observed constants are equal to zero and it represents the
system in equilibrium.
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5. Finally the mole fractions of all chemical species as a function of time are obtained
after Inverse Laplace transform by means of the general partial fraction theorem
as it described in a previous paper [9]. The final solution can be presented in a
form: S(t) = ∑

x=α,β,γ,δ C S
x e−xt

System I: Hydroxyl substituent is present and quinoidal base species A is formed, B4
is not formed. The general scheme of the reaction network can be written as:

(24)

The following assumptions have been made:

– AH+/A are in fast equilibrium and behaves like one component:
– B4 is not formed due to thermodynamic and kinetic reasons
– Reaction A → Cc is not reversible
– Ionized species Cc− and Ct− are not formed

It is worth of note that in moderately acidic solutions neither B2 nor Cc are formed
from A as reported in the paper of Brouillard and Dubois [6].

The set of differential equation describing kinetic behavior of the system (24) are:

d[AH+ + A]
dt

= −
(

kh
[H+]

[H+ + K a] + kOH
Ka

[H+ + K a]
)

[AH+ + A]
+k−h[H+][B] (25)

d[B]
dt

= kh
[H+]

[H+] + Ka
[AH+ + A] − (k−h[H+] + kt )[B] + k−t [Cc]

(26)
d[Cc]

dt
= kOH

Ka

[H+] + Ka
[AH+ + A] + kt [B]

−(k−t + ki )[Cc] + k−i [Ct]
(27)

d[Ct]
dt

= ki [Cc] − k−i [Ct] (28)

Mass balance of the system:

[AH+ + A] + [B] + [Cc] + [Ct] = C0 (29)

For purposes of simplicity the following substitution are made:
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k′
h = kh

[H+]
[H+] + Ka

(30)

k′−h = k−h[H+] (31)

k′
OH = kOH

Ka

[H+] + Ka
(32)

k′
t = kt + k H

t [H+] + kOH
t [OH−] (33)

k′−t = k−t + k H−t [H+] + kOH−t [OH−] (34)

After Laplace transformation of Eqs. (25–28) [11]:

ah(s)+a(s) =
(

k′−h

(
s(ah0+b0)(s+ki+k−i )+k′−t (s−ct0s+k−i )

)

+ah0s(s
(
s+k′−t+ki

) +k′
t (s+ki )+k−i

(
s+k′

t+k′−t

)
)/

s.P(s)

(35)

b(s) =
⎛

⎝
s(s+ki+k−i )

(
k′

h(ah0+b0)+b0
(
s+k′

OH

))

+ (
k′

h(s−ct0s+k−i )+k−i
(
s−ah0s+k′

OH

)

+s
(
s(b0+cc0)+k′

OH(1−ct0)
))

k′−t

⎞

⎠

/

s.P(s) (36)

cc(s) =

⎛

⎜
⎜
⎝

s(s+k′
h)(cc0s+(cc0+ct0)k−i )+s((ah0+cc0)s

+(1−b0)k−i )k′
OH+k′−h(k−i ((cc0+ct0)s+k′

OH)+s(cc0s
+(1−ct0)k′

OH))+(k′
h((1−ct0)s+k−i )+k−i (s−ah0s+k′

OH)

+s((b0+cc0)s+(1−ct0)k′
OH))k′

t

⎞

⎟
⎟
⎠

/

s.P(s)

(37)

where:
s is a new varable in Laplace space
ah0, b0, cc0 and ct0 are mole fraction of the corresponding species at t = 0

P(s) = A.s3 + Bs2 + Cs + D = (s + α)(s + β)(s + γ ) (38)

where α, β, γ are the roots of P(s) and observed rate constant of the processes for the
system Eq. (24).

The coefficients of the P(s) Eq. (38) are:

A = 1 (39)

B = k′
h + k′−h + k′

t + k′−t + ki + k−i + k′
OH (40)

C = k′
h

(
k′

t + k′−t + ki + k−i
) + k′−h

(
k′−t + ki + k−i

) + k′
t ki + k−i

(
k′

t + k′−t

)

+ k′
OH

(
k′−h + k′

t + k′−t + ki + k−i
)

(41)

D = k′
h

(
ki k

′
t + k−i

(
k′−t + k′

t

)) + k′
OH

(
k′−h(k−i + ki ) + k′−hk′−t k−i + k′

t ki

+ k−i
(
k′

t + k′−t

))
(42)

As reported previously [9], the observed rate constants of the system Eq. (24) α, β, γ

can be claculated through Vieta’s formulas or by solving the 3rd degree polynomial
Eq. (38) applying Cardano’s formulae [12].
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α + β + γ = B (43)

α.β + α.γ + β.γ = C (44)

α.β.γ = D (45)

After α, β, γ were obtained, we can perform an inverse Laplace transform and gain a
formulae for the mole fraction variation of the components as a function of time.

For AH+/A, Eq. (35), after inverse Laplace transform:

[AH + A](t) = k′−hk′−t k−i

αβγ
+ e−αt CAH

α

α(α − β)(α − γ )

+ e−βt CAH
β

β(α − β)(β − γ )
+ e−γ t CAH

γ

γ (γ − α)(γ − β)
(46)

where

CAH
x =

(
k′−h

(−x(ah0 + b0)(x−k−i−ki ) + (x(1−ct0)−k−i )k′−t

) +
+ah0x

(
x2−x(ki + k′−t ) + (ki−x)k′

t + k−i (k′
t + k′−t−x)

)
)

x = α, β, γ (47)

It is easy to be seen that:

[AH+](t) = [H+]
[H+] + Ka

[AH + A](t) (48)

[A](t) = Ka

[H+] + Ka
[AH + A](t) (49)

From Eq. (36), after inverse Laplace transform:

[B](t) =
(
k′

h + k′
OH

)
k′−t k−i

αβγ
+ e−αt C B

α

α(α − β)(α − γ )

+ e−βt C B
β

β(β − α)(β − γ )
+ e−γ t C B

γ

γ (γ − α)(γ − β)
(50)

where

C B
x =

(
x(x−ki−k−i )

(
b0(x−k′

OH)−k′
h(ah0 + b0)

) + (
k′

h(x(1−ct0)−k−i )−
−k−i

(
x(ah0−1) + k′

OH

) + x
(
(1−ct0)k′

OH−x(b0 + cc0)
))

k′−t

)

x = α, β, γ (51)

From Eq. (37), after inverse Laplace transform
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Fig. 1 Observed rate constants in (s−1) for simulated system with: kh = 1, k−h = 25,000, kt =
0.6, k−t = 1, ki = 0.01, k−i = 0.0006, k H

t = 10, kOH
t = 109, kOH = 100, Ka = 10−4. The val-

ues were chosen to be close to the experimental values obtained for 4’,7-dihydroxy flavylium [13] which
was used as a model compound. a α, b β, c γ as defined in Eqs. (43–45)

[Cc](t) =
(
k′−hk′

OH + k′
t

(
k′

h + k′
OH

))
k−i

αβγ
+ e−αt CCc

α

α(α − β)(α − γ )

+ e−βt CCc
β

β(α − β)(β − γ )
+ e−γ t CCc

γ

γ (γ − α)(γ − β)
(52)

where

CCc
x =

⎛

⎜
⎜
⎝

x(x − k′
h)(xcc0 + (ah0 + b0 − 1)k−i ) − x(x(ah0 + cc0)

+(b0 − 1)k−i )k′
OH + k−h(−k−i (x(ah0 + b0 − 1) + k′

OH)

+x((1 − ct0)k′
OH) − xcc0) + (k′

h(x(1 − ct0) − k−i )

−k−i ((ah0 − 1)x + k′
OH) + x((1 − ct0)k′

OH − x(b0 + cc0)))k′
t

⎞

⎟
⎟
⎠

x = α, β, γ (53)

and finally [Ct](t) can be calculated from the material balance of the system:

[Ct](t) = 1 − ([AH + A](t) + [B](t) + [Cc](t)) (54)

The representation of the rate constants as a function of pH is a complex process and in
most of the cases it is not possible to be observed in a single experiment all the nuances
of the system, as reported in Fig. 1. Moreover, the faster process needs a stopped flow
instrument. In some cases it is not possible to separate the three kinetic processes.

Figure 1 represents the pH dependence of the three rate constants. Figure 1a exhib-
its the characteristic U shape of a process where the left branch regards the hydration
Eq. (2), and the right one the hydroxyl attack to the quinoidal base. An example of this
reaction is given in Fig. 2a. Figure 1b, has also two components the one of the left when
the kinetic process is controlled by the tautomerization Eq. (4), and the other when
the control is made by the hydration. Figure 2b shows an experimental case. Finally,
Fig. 1c represents the slower step which is controlled by the cis-trans isomerisation
Eq. (6) at lower pH values and by the hydration at higher pH values, being the final
raising due to the reaction of the quinoidal base (a kinetic product) with the hydroxyl.
Figure 2c shows an experimental case. Regarding the bell shape curve, Fig. 1c, and
neglecting the final raising which take place at more basic pH values, the maximum
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Fig. 3 Observed mole fraction changes as a function of time for simulated system with: kh = 1, k−h =
25,000, kt = 0.6, k−t = 1, ki = 0.01, k−i = 0.0006, k H

t = 10, kOH
t = 109, kOH = 100, Ka = 10−4. a

After direct pH jump from 1 to 6.5. b After reverse pH jump from 6.5 to 2.5. c Flash photolysis experiment
at pH = 5.5 made with assumption that all of the Ct available at equilibrium is instantaneously converted
into Cc

of the curve is given by Eq. (55), and the minimum of the curve at very low pH trends
to k−i .

HM AX ≈ Kak−i + √
Kakhk−i ((Ka + Kh Kt Ki ) − ki Kt )

kh − k−i
(55)

The model can be generalized to account for not only direct pH jumps starting from
flavylium cation (Fig. 3a), but also reverse pH jumps where equilibrated solutions at
higher pH values are made more acidic (Fig. 3b). In addition it is possible to fit the
data form a flash photolysis experiments. In this last case Ct is irradiated leading to
Cc and according to the pH give spontaneously (or not) AH+ and A (Fig. 3c).

System II: B4 is presented:

B4

k−h4

[
H+]

�
kh4

AH+ kh2
�

k−h2

[
H+]

B2

kt
�
k−t

Cc
ki
�
k−i

Ct (56)

Differential equations for system (56) could be written in a form:
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d[B4]
dt

= kh4[AH+] − k−h4[H+][B4] (57)

d[AH+]
dt

= k−h4[H+][B4] − (kh2 + kh4)[AH+] + k−h2[H+][B2] (58)

d[B2]
dt

= kh2[AH+] − (k−h2 + kt )[B2] + k−t [Cc] (59)

d[Cc]
dt

= kt [B2] − (k−t + ki )[Cc] + k−i [Ct] (60)

d[Ct]
dt

= ki [Cc] − k−i [Ct] (61)

Mass balance of the system:

[B4] + [AH+] + [B2] + [Cc] + [Ct] = C0 (62)

As before:

k′−h2 = k−h2[H+] (63)

k′−h4 = k−h4[H+] (64)

k′
t = kt + k H

t [H+] + kOH
t [OH−] (65)

k′−t = k−t + k H−t [H+] + kOH−t [OH−] (66)

After Laplace Transform of Eqs. (57–61):

b4(s)= −

⎛

⎜
⎜
⎝

k′−h2(s(−b40s+(cc0+ct0−1)kh4)(s+k−i+ki )

+ (kh4((ct0−1)s−k−i )−b40s(s+k−i )) k′−t )

+s(−b40(s+kh2)+(b20+cc0+ct0−1)kh4)(
s(s+ki+k′−t )+(s+ki )k′

t+k−i (s+k′−t+k′
t )

)

⎞

⎟
⎟
⎠

/

P1(s) (67)

ah(s)=

⎛

⎜
⎜
⎝

k′−h2

(
s((a0+b20)s−(cc0+ct0−1)k′−h4)(s+k−i+ki )

+(k′−h4(s−ct0s+k−i )+s((ah0+b20+cc0)s
+(1−b40)k−i ))k′−t

) +s(ah0s+(ah0+b40)k′−h4)

(s(s+ki+k′−t )+(s+ki )k′
t+k′−t (s+k′−t+k′

t ))

⎞

⎟
⎟
⎠

/

P1(s)

(68)

b2(s)=

⎛

⎜
⎜
⎝

s(s+k′−h4+kh4)(b20s(s+k−i+ki )+((b20+cc0)s
+(1−ah0−b40)k−i )k′−t )+kh2 (s ((ah0+b20)s
−(cc0+ct0−1)k′−h4

)
(s+k−i+ki )+(k′−h4(s−ct0s+k−i )

+s((ah0+b20+cc0)s+(1−b40)k−i ))k′−t

)

⎞

⎟
⎟
⎠

/

P1(s)

(69)

ct (s)=

⎛

⎜
⎜
⎝

sk−h2(s+k′−h4+kh4)((cc0+ct0)ki+ct0(s+k′−t ))

+s((s+kh2)(s+k′−h4)+skh4)((cc0+ct0)ki+ct0(s+k′−t ))

+ (
s(s+k′−h4+kh4)(ct0s+(b20+cc0+ct0)ki )

+kh2
(
ct0s(s+k′−h4)+

(
(1−b40)s+k′−h4

)
ki

))
k′

t

⎞

⎟
⎟
⎠

/

P1(s)

(70)
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P1(s)=s(A.s4+Bs3+Cs2+Ds+E) = s(s+α)(s+β)(s+γ )(s+δ) (71)

A = 1 (72)

B = kh2 + k′−h2 + kh4 + k′−h4 + k′
t + k′−t + ki + k−i (73)

C = (kh4 + k′−h4)(k
′−t + k−i + ki ) + k′−t k−i + k′−h2(k

′−h4 + kh4 (74)

+ k−i + ki + k′−t ) + (k′−h4 + kh4 + k−i + ki )k
′
t

+ kh2(k
′−h4 + k−i + ki + k′−t + k′

t ) (75)

D = k′−h2((k
′−h4 + kh4)(k−i + ki ) + (k′−h4 + kh4 + k−i )k′−t )

+ (k′−h4 + kh4)(ki k′
t + k−i (k′−t + k′

t )) + kh2(ki k′
t + k−i (k′−t + k′

t )

+ k′−h4(k−i + ki + k′−t + k′
t ))

E = k′−h2k′−t k−i (k
′−h4 + kh4) + kh2k′−h4(ki k

′
t + k−i (k

′−t + k′
t )) (76)

Roots of (71) are observed rate constants α, β, γ, δ and

α + β + γ + δ = B (77)

αβ + αγ + αδ + βγ + βδ + γ δ = C (78)

αβγ + αβδ + βγ δ = D (79)

αβγ δ = E (80)

Roots can be found numerically of by solving Eq. (71) analytically [17].
After inverse Laplace transform:

[B4](t)=kh4k′−h2k′−t k−i

αβγ δ
+ e−αt C B4

α

α(α − β)(α − γ )(α − δ)
+ e−βt C B4

β

β(β − α)(β − γ )(β − δ)

+ e−γ t C B4
γ

γ (γ − α)(γ − β)(γ − δ)
+ e−δt C B4

δ

δ(δ − α)(δ − β)(δ − γ )
(81)

where : C B4
x =

⎛

⎜
⎜
⎜
⎜
⎝

k′−h2(−b40x(x(x − k′−t − ki ) + k−i (k′−t − x))

+kh4(k−i ((cc0 + ct0 − 1)x + k′−t )

+x((cc0 + ct0 − 1)(ki − x) + (ct0 − 1)k′−t )))

−x(−b40x + b40kh2 − (b20 + cc0 + ct0 − 1)kh4)

(x(x − k′
t − k′−t ) + ki (k′

t − x) + k−i (k′
t + k′−t − x))

⎞

⎟
⎟
⎟
⎟
⎠

(82)

[AH](t)=k′−h4k′−h2k′−t k−i

αβγ δ
+ e−αt CAH

α

α(α−β)(α−γ )(α−δ)
+ e−βt CAH

β

β(β−α)(β−γ )(β−δ)

+ e−γ t CAH
γ

γ (γ − α)(γ − β)(γ − δ)
+ e−δt CAH

δ

δ(δ − α)(δ − β)(δ − γ )
(83)
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where:

CAH
x =

⎛

⎜
⎜
⎝

k′−h2(k
′−h4(k−i ((cc0 + ct0 − 1)x + k′−t ) + x((cc0 + ct0 − 1)(ki − x)

+(ct0 − 1)k′−t )) + x(x((ah0 + b20)(ki − x) + (a0 + b20 + cc0)k′−t )

+k−i ((ah0 + b20)α − (1 − b40)k′−t ))) + x(ah0x − (ah0 + b40)k′−h4)

(x(x − k′−t − k′
t ) + ki (k′

t − x) + k−i (k′−t + k′
t − x))

⎞

⎟
⎟
⎠

(84)

[B2](t) = k′−h4kh2k′−t k−i

αβγ δ
+ e−αt C B2

α

α(α−β)(α−γ )(α−δ)
+ e−βt C B2

β

β(β−α)(β−γ )(β−δ)

+ e−γ t C B2
γ

γ (γ − α)(γ − β)(γ − δ)
+ e−δt C B2

δ

δ(δ − α)(δ − β)(δ − γ )
(85)

where:

C B2
x =

⎛

⎜
⎜
⎜
⎜
⎝

x(x − k′−h4 − kh4)(x(b20(x − ki ) − (b20 + cc0)k′−t )

+k−i ((b20 + cc0 + ct0)k′−t − b20x)) + kh2(k′−h4
(k−i ((cc0 + ct0 − 1)x + k′−t ) + x((cc0 + ct0 − 1)(ki − x)

+(ct0 − 1)k′−t )) + x(x((ah0 + b20)(ki − x)

+(ah0 + b20 + cc0)k′−t ) + k−i ((ah0 + b20)x − (1 − b40)k′−t )))

⎞

⎟
⎟
⎟
⎟
⎠

(86)

[Ct](t) = k′−h4kh2ki kt

αβγ δ
+ e−αt CCt

α

α(α − β)(α − γ )(α − δ)
+ e−βt CCt

β

β(β − α)(β − γ )(β − δ)

+ e−γ t CCt
γ

γ (γ − α)(γ − β)(γ − δ)
+ e−δt CCt

δ

δ(δ − α)(δ − β)(δ − γ )
(87)

where:

CCt
x =

⎛

⎜
⎜
⎜
⎜
⎝

−xk′−h2(x − k′−h4 − kh4)(−(cc0 + ct0)ki + ct0(x − k′−t ))

+x(x − k′−h4 − kh4)(ct0x(x − k′−t − k′
t )

+ki (−(cc0 + ct0)x + (b20 + cc0 + ct0)k′
t ))

−kh2(k′−h4(ki ((cc0 + ct0)x − k′
t ) + ct0x(k′−t + k′

t − x))

+x(ct0x(x − k′−t − k′
t ) + ki ((1 − b40)k′

t − (cc0 + ct0)x)))

⎞

⎟
⎟
⎟
⎟
⎠

(88)

The shape of the different rates as function of pH is given in Fig. 4. The simulation
is made considering that B2 is formed 3 times faster than B4. Figure 4a regards the
rate constant of the hydration/dehydration involving B2, Eq. (2) and tautomerization
Eq. (4), while Fig. 4b an identical process involving B4, Eq. (3). The difference of the
two figures at higher pH values is a result from the fact that B4 is a kinetic product not
evolving to Cc and Ct, while B2 can be involved into two different types of reactions.

Figure 4c is similar to Fig. 1b the left branch being controlled by tautomerization
and the right by hydration of B2 in competition with B4 formation. Finally the slowest
process presented on Fig. 4d is still an asymmetric bell shape curve where at higher
pH values the rate determining step is the formation of Ct in this precise simulation
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Fig. 4 Observed rate constants in (s−1) for a simulated system defined in Eq. (56) with: kh2 = 1, k−h2 =
3,000, kh4 = 0.8, k−h4 = 1,000, kt = 1, k−t = 0.1, ki = 0.01, k−i = 0.0042, k H

t = 10, kOH
t = 109. a

α, b β, c γ , d δ

controlled from the reservoir of B4. On Fig. 5a, b the experimental case of processes
shown on Fig. 4c, d is presented.

As in the previous case (System I) the mole fraction variation after reverse pH jumps
and flash photolysis experiment were reported on Fig. 6.

3 Results and discussion

Figure 7 illustrates how the model can contribute to the comprehension of the kinetic
details in such a complex network of chemical reactions. It is possible to distinguish
three steps occurring in more or less separated scales of time. In the faster step (Fig. 7a)
the mole fraction of B4, B2 and Cc increase at the expenses of AH+, which mole frac-
tion drops almost to zero. The relative amount depends on the ratio of the mole fraction
defined in Eqs. (10–14) and from the initial and final pH. In a slower step Ct is formed
through B2 and Cc, and a new pseudo-equilibrium is reached involving these three
species. It is worth noting that B4 is still trapped during this step. The final equilib-
rium (Fig. 7c) is attained through the conversion of B4 into Ct, Cc and B2. This result
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Fig. 8 Direct pH jump from 1 to 7 for a system with: kh2 = 0.47, k−h2 = 14,000, kh4 = 0.81, k−h4 =
2.6 × 105, kt = 0.23, k−t = 0.46, ki = 5.0 × 10−5, k−i = 5.0 × 10−7, k H

t = 19.5, kOH
t = 7.0 × 109

is observed whenever the compound does not present a kinetic barrier, as recently
reported. [18]

In contrast in the case of the existence of a high barrier as in 4’-methoxyflavylium
[19] the first kinetic process corresponds to the formation of B4, Cc and B2, the second
process is the conversion of B4 in more Cc and B2, and only after this step the Ct is
formed in a much longer timescale (see Fig. 8).

4 Conclusions

The complete resolution of the kinetic equations of the network of chemical reac-
tions involving flavylium compounds was achieved. The model following the initial
proposal of McClelland [7,19] is general and could be applied for those flavylium
compounds bearing hydroxyl substituents that give rise to quinoidal bases or those
lacking of the hydroxyl substituent where in alternative the species B4 is formed. The
acid and basic catalysis in both hydration reactions and tautomerization was included.
The model predicts with great accuracy the behavior of previously reported flavylium
systems and can be used to fit the experimental data and thus recover the respective
rate constants. Moreover, it can fit the data from the direct and reverse pH jumps as
well as the flash photolysis experiments. In addition, the pH dependent mole frac-
tion distributions at the equilibrium as well as at the pseudo-equilibrium are easily
obtained. The developed model is applicable not only to the flavylium systems, but to
all of the chemical and biochemical reactions following the same pathway [20].
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